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Abstract

The out-of-plane instability of a moving plate, travelling between two rollers with constant velocity, is studied, taking

into account the mutual interaction between the buckled plate and the surrounding, axially flowing ideal fluid.

Transverse displacement of the buckled plate (assumed cylindrical) is described by an integro-differential equation that

includes the centrifugal force, the aerodynamic reaction of the external medium, the vertical projection of membrane

tension, and the bending force. The aerodynamic reaction is found analytically as a functional of the displacement. To

find the critical divergence velocity of the moving plate and its corresponding buckling mode, an eigenvalue problem

and variational principle are derived. Plate divergence, both within a vacuum and when submerged in an external

medium, is investigated with the application of analytical and numerical techniques.

& 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

From the viewpoint of papermaking, the inherent mechanical instability of axially moving continua is an important

question. Travelling flexible strings, membranes, beams and plates are the most common models. An extensive amount

of research has been conducted on their various aspects. See, e.g., Archibald and Emslie (1958), Miranker (1960),

Swope and Ames (1963), Simpson (1973), Chonan (1986), Wickert and Mote (1990), Shen et al. (1995), Wang (2003),

Shin et al. (2005), Sygulski (2007), and Kulachenko et al. (2007a, b).

It is known from experimental studies and some theoretical estimations (Pramila, 1986) that mechanical instability in

a travelling paper web can arise at some critical velocities, and that the instability may occur in dynamical, i.e., flutter or

statical, i.e., divergence, forms. These critical velocities are of both theoretical and practical interest, as they set an upper

limit for the running speed of a paper machine, and consequently on the rate of paper production that can be achieved.

Some previous investigations [see, e.g., Chang and Moretti (1991)] show that for a moving paper web under certain

conditions, the value of divergence speed Vdiv
0 is less than the value of flutter speed V fl

0 , i.e., Vdiv
0 oV fl

0 . Thus, the speed

V0 for reliable, stable movement of the paper web must satisfy the condition V0oVdiv
0 .
e front matter & 2009 Elsevier Ltd. All rights reserved.

uidstructs.2009.09.006

ing author. Tel.: +358 40 760 7328; fax: +358 14 260 2771.

ess: juha.jeronen@jyu.fi (J. Jeronen)

www.elsevier.com/locate/jfs
dx.doi.org/10.1016/j.jfluidstructs.2009.09.006
mailto:juha.jeronen@jyu.fi


ARTICLE IN PRESS
N. Banichuk et al. / Journal of Fluids and Structures 26 (2010) 274–291 275
An important factor that affects the instability of the axially moving continuum is the interaction between the elastic

continuum and the surrounding medium. The results of a study by Pramila (1986) show that the critical velocities and

eigenfrequencies obtained using the results of Mujumdar and Douglas (1976), which neglect the web–air interaction,

may be up to 400% too high.

Different approaches have been used in literature for taking into account the fluid–structure interaction. For

example, in Watanabe et al. (2002), two different methods of analysis were developed in order to clarify the

phenomenon of paper flutter. One of these was a flutter simulation using a Navier–Stokes code, and the other method

was based on a potential flow analysis of an oscillating thin airfoil. In Wu and Kaneko (2005), both linear and nonlinear

analyses of sheet flutter caused by fluid–structure interaction in a narrow passage were developed.

The simplest approach toward the fluid–structure interaction is to assume potential flow (Niemi and Pramila, 1986;

Pramila, 1987). To solve the external aerodynamic problem, and to find the reaction of the surrounding medium, the

finite element method has been used (Niemi and Pramila, 1986). Added-mass approaches are also common, usually in

combination with a finite element solution [Pramila (1986, 1987), and for a modified version with boundary layer

theory, Frondelius et al. (2006)].

It has been noted (Pramila, 1986) that in the case without longitudinal transportation of the vibrating medium,

comparison of experimental and theoretical results shows that predictions based on the potential flow theory are within

about 10% of the measured results. According to the same study, the boundary layer is negligible even in the case with

longitudinal transportation, and thus potential flow predictions should apply there also. However, in a recent paper,

Frondelius et al. (2006) show that the boundary layer does have an effect, especially near the critical velocity of the

vibrating medium. While the eigenfrequency predictions agree with those from potential flow theory, the divergence

velocities are found to be significantly higher.

Nevertheless, from an academic research viewpoint, the potential flow problem is a standard reference case. It has

been studied for axially moving materials in stationary air [e.g., Pramila (1986)], and for stationary structures in axial

flow [e.g., Eloy et al. (2007)]. In this study, we will combine these two cases, solving the problem for a travelling web

subjected to axial flow. We will find the lowest critical velocity, and its corresponding buckling shape. To do this, we

apply the Eulerian concept of elastic stability that was first used by him for buckling analysis of compressed elastic

columns. As usual, we will concentrate on small deformations and use linear theory. We will further assume that the

deformation is constant in the y (width) direction. It should be noted that the cylindrical deformation assumption is an

approximation, due to the localisation of deformation near the free edges that has been observed in axially moving

paper webs.

With the limitations of potential flow and cylindrical deformation, we gain the possibility for an analytical solution of

the aerodynamic problem. The main contribution of this study is an analytical functional representation for the

reaction the fluid exerts on the buckled plate, when axial motion is accounted for both the plate and the fluid.

The form of the present problem shares some similarities with the problems of pipes conveying fluid, and stationary

structures subjected to axial flow. Indeed, a similar functional analytical solution for the reaction of the fluid has been

found for a stationary plate in axial flow by Kornecki et al. (1976). For the similarities between the two mentioned

areas, see the review by Paı̈doussis (2008).

Also, the numerical methods used for such problems are readily applicable here. Eloy et al. (2007) and Huang (1995),

for example, have studied the flutter of a cantilevered plate. In both of the studies, a Galerkin approach with the

vacuum vibration modes as the basis was used. This is the approach we will also apply.

The study is laid out as follows. First we set up the aeroelastic problem, and present the analytical solution of the

aerodynamical part. We insert the result into the original elastic equation, obtaining an aeroelastic equation. We then

formulate in variational form the eigenvalue problem of the critical divergence velocity Vdiv
0 , and make a few

observations on the vacuum case. In the last section, we present some numerical results based on the aeroelastic

equation and the Fourier–Galerkin method, and compare the predicted divergence velocity to known results.
2. Governing equations of elastic instability of moving plate interacting with surrounding ideal fluid

Consider at first small transverse cylindrical deformations of a plate travelling with constant velocity V0 and

interacting with surrounding air, modelled as ideal fluid. The plate moves between rollers placed at x¼ � ‘ and x¼ ‘
along the x-axis. See Fig. 1.

We will work in the context of the flat panel model, which describes cylindrical deformations of a plate. Note that

although the equations look similar, this model is not the same as the one-dimensional beam model. See Timoshenko

and Woinowsky-Krieger (1959) and Bisplinghoff and Ashley (1962).
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Fig. 1. Travelling plate, supported at x¼ � ‘ and x¼ þ ‘, buckling when its velocity is V0 ¼Vdiv
0 . The displacement w of the plate is

assumed to be cylindrical, i.e., constant in the y direction (perpendicular to the page, not shown). At infinity, the fluid moves along the

x-axis with the velocity v1. The plate loses its stability at some critical divergence velocity Vdiv
0 .
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The corresponding equilibrium equation has the form

ðmV 2
0 � TÞ

d2w

dx2
þD

d4w

dx4
¼ qf ; ð1Þ

where m is the areal mass density ð½m� ¼ kg=m2Þ of the plate, T is the tension per unit length in the x direction, D is the

cylindrical rigidity of the plate, qf is the aerodynamic reaction (expressed as a volume force, ½qf � ¼N=m3) and w is the

small displacement in the z direction (see Fig. 1). The cylindrical rigidity is given by (Timoshenko and Woinowsky-

Krieger, 1959, p. 5)

D¼
Eh3

12ð1� n2Þ
; ð2Þ

where E is Young’s modulus, h is the plate thickness, and n is the Poisson ratio of the plate. The cylindrical rigidity is

also known as the flexural rigidity.

We will work in a dimensionless notation, where we define

x0 � x=‘ and ð3Þ

w0ðx0Þ � wð‘x0Þ: ð4Þ

For brevity of notation, the primes and the ‘s will be omitted during derivation, and the final results will be given with

the ‘s re-inserted.
We suppose here that the plate is simply supported at both ends. The corresponding boundary conditions at x¼ � 1

and þ1 (where x is now dimensionless) are given as

ðwÞx ¼ �1 ¼
d2w

dx2

� �
x ¼ �1

¼ 0; ðwÞx ¼ 1 ¼
d2w

dx2

� �
x ¼ 1

¼ 0: ð5Þ

The divergence phenomenon consists of appearance of nontrivial ðwc0Þ equilibrium forms of the plate at some

values of velocity V0. To derive the static equation of equilibrium for determining the buckled forms of the plate and the

critical divergence speed Vdiv
0 , it is necessary to derive the expression for aerodynamic reaction qf as a function of w.

Considering the cylindrical deformation assumption, we shall limit our study to a solenoidal flow in two dimensions.

We consider the xz plane with Cartesian coordinates, setting the x-axis parallel to the undisturbed flow of the fluid and

the movement of the plate.

The aerodynamic velocity potential of airflow with respect to the moving plate surface, and total pressure, have the

forms

Fðx; zÞ ¼ xðv1 � V0Þ þ jðx; zÞ; ð6Þ

Pðx; z; tÞ ¼ p1 þ pðx; z; tÞ: ð7Þ
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Here v1 and p1 are, respectively, the given velocity and pressure of the fluid at infinity, and j and p are aerodynamic

disturbances of the velocity potential and pressure.

The total reaction force qf exerted by the fluid is equal to the difference of pressure between the upper and lower faces

of the plate,

qf ðxÞ ¼ P�ðxÞ � PþðxÞ ¼ p�ðxÞ � pþðxÞ; � 1 � x � 1; ð8Þ

where the superscript notation is defined for any function f as

f 7ðxÞ � lim
z-07

f ðx; zÞ:

The upper (lower) signs correspond to each other.

To derive an expression for the pressure pðx; zÞ, we use Bernoulli’s integral [see, e.g., Sedov (1972), pp. 155–157]:

1

2
ðrFÞ2 þ

1

rf

p¼C; ð9Þ

where rf is the density of the fluid and C is a constant. The pressure pðx; zÞ thus depends on the velocity potential

Fðx; zÞ.
The potential F¼Fðx; zÞ can be found by solving a Neumann boundary value problem for the region exterior to the

plate. Instead of F, we shall consider the disturbance potential function j¼ jðx; zÞ related to F by the formula (6).

Regarding j and w and their first derivatives as small, we linearise the aerodynamic problem and introduce a boundary

condition that the fluid does not cross the surface of the plate, relating this surface to the boundary of the cut z¼ 0,

�1 � x � 1.

By inserting (6) into (9) and omitting the second-order small terms ð@j=@xÞ2 and ð@j=@zÞ2, we obtain an expression

for the pressure p. Inserting the result into (8), we have

qf ¼ p� � pþ ¼ rf ðv1 � V0Þ
@j
@x

� �þ
�

@j
@x

� ��� �
: ð10Þ

The boundary condition that the fluid does not cross the surface of the plate, vn ¼ ðn � vÞ ¼ ðn � rFÞ ¼ 0, is represented

in the following linearised form:

vn ¼ ðv1 � V0Þnx þ
@j
@z

nz ¼ 0; ð11Þ

where nx � �dw=dx and nz � 1 are the projections of the unit vector n that is normal to the plate surface.

Consequently, we have

@j
@z
¼ ðv1 � V0Þ

dw

dx
: ð12Þ

Thus the linearised aerodynamic problem can be written as

Dj �
@2j
@x2
þ
@2j
@z2
¼ 0; ð13Þ

@j
@z

� �7

¼ ðv1 � V0Þ
dw

dx
; z¼ 0; � 1 � x � 1; ð14Þ

ðrjÞ1 ¼ 0: ð15Þ

The domain of the aerodynamic problem is infinite. It consists of the whole xz plane with the exception of the cut at

z¼ 0; � 1 � x � 1, which is our linearised representation of the space occupied by the plate (note boundary condition

(14)). Although we consider an axially moving plate, for the purposes of our analysis the plate only exists on the interval

�1 � x � 1.

The solution of the boundary value problem (13)–(15) and the derivation of the formula for the aerodynamic force

has been presented in Banichuk and Neittaanmäki (2008) (see also Appendix A) as a function of the plate transverse
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displacement w in the following form:

qf ¼ rf ðv1 � V0Þ
@j
@x

� �þ
�

@j
@x

� ��� �
¼ � rf ðv1 � V0Þ

2 @

@x

Z 1

�1

Nðx; xÞ
dw

dx
ðxÞdx; ð16Þ

where the aerodynamic kernel N is defined as

Nðx; xÞ ¼
1

p
ln

1þ L
1� L

����
���� ð17Þ

and

Lðx; xÞ ¼
ð1� xÞð1þ xÞ
ð1� xÞð1þ xÞ

� �1=2
: ð18Þ

One needs to be careful with the derivative on the left side of the integral in qf because the aerodynamic

kernel Nðx; xÞ is singular. It can be shown [for details, see Banichuk et al. (2008)] that the L1 norm of N is finite,

but that of @N=@x is not, so we cannot directly take the derivative operator into the integral. However, because the

integral in qf ,Z 1

�1

Nðx; xÞ
dw

dx
ðxÞdx � FðxÞ

is absolutely convergent, the function F ðxÞ is bounded. Thus, two different approaches may be employed. If the integral

is evaluated first, the resulting function can be differentiated by all the usual methods. However, because the

antiderivative is not known analytically, it may be easier in a numerical solution to use a weak form and integration by

parts, as we do below. Integration by parts in the weak form is legitimate because the integrand of the weak form is a

product of two bounded, integrable functions: the test function and qf ¼ � rf ðv1 � V0Þ
2@F ðxÞ=@x.

In summary, in this section we derived the following integro-differential equation for the stationary displacement

function w¼wðxÞ:

ðmV 2
0 � TÞ

d2w

dx2
þD

d4w

dx4
¼ � rf ðv1 � V0Þ

2 @

@x

Z 1

�1

Nðx; xÞ
dw

dx
ðxÞdx; ð19Þ

which is considered with the corresponding boundary conditions (5). The equation is written in the dimensionless

notation introduced above. Accounting for the span length ‘, Eq. (19) becomes

ðmV 2
0 � TÞ

1

‘2
d2w

dx2
þ

D

‘4
d4w

dx4
¼ �

1

‘
rf ðv1 � V0Þ

2 @

@x

Z 1

�1

Nðx;xÞ
dw

dx
ðxÞdx; ð20Þ

where x and w still represent the dimensionless quantities (3) and (4).

Eq. (20), together with boundary conditions (5), constitutes our eigenvalue problem. The minimal value of the

parameter V0 is called the critical divergence speed, if there exists a nontrivial function wðxÞ satisfying Eq. (20) with

boundary conditions (5). This function, if it exists, is known as the divergence shape or mode.
3. Eigenvalue problem and variational principle

Let us multiply the left- and right-hand sides of (19) by an arbitrary function fðxÞ satisfying the boundary conditions

(5). Then we integrate both sides with respect to x over the interval ½�1; 1�:

ðmV 2
0 � TÞ

Z 1

�1

d2w

dx2
fdxþD

Z 1

�1

d4w

dx4
fdx¼

Z 1

�1

qf fdx: ð21Þ

Performing integration by parts twice in the bending term and once in the other terms, we obtain

ðT �mV 2
0Þ

Z 1

�1

dw

dx

� �
df
dx

� �
dxþD

Z 1

�1

d2w

dx2

� �
d2f
dx2

� �
dx

� rf ðv1 � V0Þ
2

Z 1

�1

Z 1

�1

dw

dx
ðxÞNðx; xÞ

df
dx
ðxÞdxdx¼ 0: ð22Þ
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Note that, as discussed above, we have transferred the outer derivative in qf onto the f we introduced in (21). Again

accounting for an arbitrary length ‘, we have

ðT �mV 2
0Þ
1

‘

Z 1

�1

dw

dx

� �
df
dx

� �
dxþ

D

‘3

Z 1

�1

d2w

dx2

� �
d2f
dx2

� �
dx

� rf ðv1 � V0Þ
2

Z 1

�1

Z 1

�1

dw

dx
ðxÞNðx; xÞ

df
dx
ðxÞdxdx¼ 0: ð23Þ

Rearranging the terms, we obtain

Qðw;fÞ � �ðmJC þ rf JF ÞV
2
0 þ ð2v1rF JF ÞV0 þ ðTJT þDJB � rF v21JF Þ ¼ 0; ð24Þ

where the functionals corresponding to the tension, bending, aerodynamic (F), and centrifugal terms are

JT ðw;fÞ ¼ JCðw;fÞ ¼
Z 1

�1

dw

dx

� �
df
dx

� �
dx;

JBðw;fÞ ¼
Z 1

�1

d2w

dx2

� �
d2f
dx2

� �
dx;

JF ðw;fÞ ¼
Z 1

�1

Z 1

�1

dw

dx
ðxÞNðx; xÞ

df
dx
ðxÞdxdx: ð25Þ

We can now state the variational form of our eigenvalue problem: find the smallest positive V0, and the

corresponding divergence shape wðxÞ, such that Eq. (24) holds for all functions fðxÞ that satisfy the boundary

conditions (5). This is the weak form of the problem introduced in the previous section, and the same nomenclature

applies.
4. Plate divergence in vacuum

If the motion of the plate is considered in a vacuum, then rf ¼ 0 and consequently qf ¼ 0. In this case, (19) becomes

ðmV 2
0 � TÞ

d2w

dx2
þD

d4w

dx4
¼ 0: ð26Þ

Because (26) contains only second- and fourth-order derivatives, we can introduce an auxiliary function

u �
d2w

dx2
ð27Þ

describing the curvature of the plate, and formulate the corresponding eigenvalue problem for it:

d2u

dx2
þ lu¼ 0; � 1 � x � 1; ð28Þ

uð�1Þ ¼ 0; uð1Þ ¼ 0: ð29Þ

The parameter l in (28) is

l¼
mV 2

0 � T

D
; ð30Þ

which plays the role of the eigenvalue. The nontrivial solutions, i.e., eigenfunctions, of the eigenvalue problem (28)–(29)

are determined as

uðxÞ ¼A sin
ffiffiffi
l
p xþ 1

2

� �
þ B cos

ffiffiffi
l
p xþ 1

2

� �
;
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with two unknown coefficients A and B and an unknown eigenvalue l. Applying the boundary conditions (29), we

obtain

uðxÞ ¼A sin jp
xþ 1

2

� �
ð31Þ

l¼ j2p2; j ¼ 1; 2; . . . ; ð32Þ

where Aa0 is an arbitrary constant. In divergence analysis made in the frame of the Eulerian concept of static

instability, the amplitudes of the eigenfunctions are unknown. Integrating (31) twice and accounting for the boundary

conditions (5), we have for the displacement of the j th mode the function

wðxÞ ¼C sin jp
xþ 1

2

� �
; � 1 � x � 1; ð33Þ

where C ¼ � ð2=jpÞ2A is an arbitrary constant. We have from (30) and (32) that the corresponding divergence speed is

ðV
divj
0 vacÞ

2
¼

T þ j2p2D

m
: ð34Þ

Thus, we observe that the shape of the eigenmode coincides with the membrane ðD¼ 0Þ eigenmode regardless

of the value of the bending rigidity D, but the bending rigidity contributes an additional term to the divergence

speed.

Only the critical divergence speed has physical significance. It corresponds to the minimal eigenvalue, i.e., j ¼ 1.

Inserting the omitted ‘ s, we have for the critical divergence speed

ðVdiv
0 vacÞ

2
¼

p2D

m‘2
þ

T

m
: ð35Þ

In the theory of paper web dynamics, the bending rigidity D is a small parameter. If D tends to zero, then the

divergence speed tends to the limit value

Vdiv
0 vac-

ffiffiffiffi
T

m

r
¼Vdiv

0 mem vac; ð36Þ

which corresponds to the critical divergence speed of a moving membrane [see, e.g., Chang and Moretti (1991)].

We also observe by letting D-0 in (34) that for a membrane in vacuum, there is only one (degenerate)

eigenvalue, and thus all displacement modes (33) correspond to the critical divergence speed. Because (33) is an infinite

Fourier basis, this implies that a membrane in vacuum may take any shape as it approaches divergence. This is in

contrast with the case with surrounding fluid, and also that of a plate in a vacuum, for both of which the divergence

shape is unique.
5. Numerical estimations

In this section we consider the eigenvalue problem of Eq. (19) with boundary conditions (5), applying numerical

techniques in order to obtain concrete values for the critical divergence speed and the corresponding eigenmode of

divergence.

The original problem can be approximated with a finite-dimensional problem in a standard form. We represent wðxÞ

as a Galerkin series in a Fourier type basis,

wðxÞ ¼
Xn0
n ¼ 1

fnCnðxÞ; ð37Þ

where n0 is a discretisation parameter and

CnðxÞ � sin np
xþ 1

2

� �
; x 2 ½�1; 1� ð38Þ

are the (normalised) eigenmodes of free vibrations of a membrane in a vacuum. The basis satisfies the boundary

conditions (5) by its construction.
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By multiplying both sides of (19) withCj (where j ¼ 1; 2; :::; n0), integrating over the domain ½�1; 1� and inserting (37),

we have, after rearranging the terms, the weak form

ðTSjn þDKjn � rf v21NjnÞfn ¼ ½ðmSjn þ rf NjnÞV
2
0 � 2rf v1Njn V0�fn; ð39Þ

where the summation convention has been used. For an arbitrary length ‘, Eq. (39) becomes

T

‘
Sjn þ

D

‘3
Kjn � rf v21Njn

� �
fn ¼

m

‘
Sjn þ rf Njn

� 	
V2

0 � 2rf v1NjnV0

h i
fn: ð40Þ

The matrices Sjn, Kjn and Njn are the discrete representations of the functionals JC ¼ JT , JB and JF , respectively, and

are defined as

Sjn �

Z 1

�1

dCj

dx

dCn

dx
dx¼

jp
2

� �2

djn; Kjn �

Z 1

�1

d2Cj

dx2

d2Cn

dx2
dx¼

jp
2

� �4

djn;

Njn �

Z 1

�1

Z 1

�1

dCn

dx
ðxÞNðx; xÞ

dCj

dx
ðxÞdxdx; ð41Þ

where djn is the Kronecker delta. The expressions for Sjn and Kjn can be obtained by a direct analytical calculation of the

antiderivative, the result of which is given above. The matrix Njn must be evaluated numerically because no closed-form

solution for the antiderivative is available.

We see that the matrices Sjn and Kjn are diagonal. This is to be expected, because we work in a vacuum eigenmode

basis, and these matrices correspond to physical effects already present in the vacuum case. However, the matrix Njn

introduced due to the fluid–structure interaction is found to be diagonally dominated, but it is clearly not diagonal.

Thus, when the plate is submerged in an external medium, couplings exist between the vacuum eigenmodes that cannot

be reproduced by an added mass approach.

Writing (40) in matrix form, multiplying both sides by ‘, dividing by tension T and applying (36), we obtain

S þ
D

‘2T
K �

‘rf

m

v21

ðVdmv
0 Þ

2
N

 !
f ¼

1

ðVdmv
0 Þ

2
S þ

‘rf

m

1

ðVdmv
0 Þ

2
N

 !
V2

0 � 2
‘rf

m

v1

Vdmv
0

N
V0

Vdmv
0

" #
f ; ð42Þ

where we have abbreviated Vdmv
0 � Vdiv

0 mem vac. To simplify the notation, we define the dimensionless quantities

l � V0=Vdiv
0 memvac; b �

D

‘2T
; ð43; 44Þ

g �
‘rf

m
; y � v1=Vdiv

0 memvac: ð45; 46Þ

Our eigenvalue problem thus becomes

ðS þ bK � gy2NÞf ¼ ½ðS þ gNÞl2 � 2gyNl�f : ð47Þ

Eq. (47) is a quadratic eigenvalue problem, which can be reduced to a (twice larger) standard linear generalised

eigenvalue problem by applying one of the companion linearisations [see, e.g., the extensive review article Tisseur and

Meerbergen (2001), p. 253]. The problem has the dimensionless eigenvalue l and three dimensionless parameters, b, g
and y. The critical divergence speed can be found from the minimal positive eigenvalue of problem (47).

For T ¼ 0 and V0 ¼ 0, from Eq. (40) we can formulate the problem of Guo and Paı̈doussis (2000) [see also Paı̈doussis

(2004)] in the limit of an infinitely wide channel:

Kf ¼U
2
Nf ; ð48Þ

where the eigenvalue U
2
is the dimensionless dynamic pressure (Paı̈doussis, 2004, p. 1149)

U
2
¼

rf ‘
3

D
v21; ð49Þ

which is the square of the dimensionless flow velocity U . Eq. (48) defines a standard linear generalised eigenvalue

problem. The critical fluid flow velocity for divergence, vdiv1 , can be found from Ucd
2
, the minimal positive eigenvalue

U
2
of the problem (48).
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Note that because the aerodynamic kernel Nðx; xÞ is singular along the line x¼ x, some care needs to be taken in

computing the integrals in the matrix Njn. We use the approximation

Njn �

Z 1

�1

Z 1

�1

dCn

dx
ðxÞNðx; xÞ

dCj

dx
ðxÞdxdx

�

Z 1�e1

�1þe1

Z x�e2

�1

dCn

dx
ðxÞNðx; xÞ

dCj

dx
ðxÞdxþ

Z 1

xþe2

dCn

dx
ðxÞNðx; xÞ

dCj

dx
ðxÞdx

� �
dx; ð50Þ

where e1 and e2 are small. It can be shown that the L1 norm of Nðx; xÞ is finite. This property, together with the Hölder

inequality guarantees that the integrals containing Nðx; xÞ converge. Thus, all Njn are finite and our approximation is

legitimate.

Some useful properties may be obtained analytically for high-level optimisation of the numerical evaluation of Njn.

First, we note that the aerodynamic kernel Nðx;xÞ itself is symmetric along the straight lines x¼ x and x¼ � x inside

the domain ðx; xÞ 2 ½�1; 1� � ½�1; 1�. On the upper and left edges of the domain (see Fig. 2) it is singular. However, if, at

these locations, we instead understand the expression of Nðx; xÞ as a one-sided limit at the edge (approaching from

inside the domain), then the symmetry applies there, too. Finally, Nðx; xÞ is undefined at exactly two corners of the

domain, but this does not affect the integrals. These observations are summarised in Fig. 2. The details for deriving all

the properties stated in the last two paragraphs are given in Banichuk et al. (2008).

Then, considering the whole expressions of the integrals in Njn, we make some more observations. If j þ n is odd, then

Njn ¼ 0 by consideration of symmetries of the integrand. The matrix is symmetric, by symmetry of Nðx;xÞ with
respect to x¼ x, and application of Fubini’s theorem. Finally, when j þ n is even, the integrand is symmetric with

respect to x¼ x and x¼ � x, so for each integral we only need to evaluate one-half of the domain and then multiply the

result by 2.

For a concrete numerical estimation, let us assume an ideal membrane with D¼ 0 and physical parameters typical for

a paper web. As for its length, let us take ‘¼ 1m as an example for the rest of this section.

It is numerically observed that antisymmetric vibration modes do not contribute to the critical divergence speed or

shape, i.e., using either n0 ¼ 2k þ 1 or n0 ¼ 2k þ 2 where k¼ 0; 1; . . . produces the same result. Let us set n0 ¼ 55 in the

Galerkin series (37). The results for different fluid velocities v1 are presented in Table 1.
Fig. 2. Behaviour of Nðx;xÞ in O � ½�1; 1� � ½�1; 1�. The infinities and the upper and left edges should be understood in the sense of

limits.
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Table 1

Critical divergence speed of a membrane ðD¼ 0Þ for different fluid velocities with the physical parameters T ¼ 500N=m, m¼ 80 g=m2

and rf ¼ 1:25 kg=m3. The length of the membrane is ‘¼ 1m.

v1 (m/s) Vdiv
0 mem (m/s) v1 (m/s) Vdiv

0 mem (m/s)

0 30.6071 0 30.6071

1 31.4552 �1 29.7549

10 38.8994 �10 21.8972

20 46.7651 �20 12.7606

30 54.1760 �30 3.1692

33 56.3032 �33 0.1958
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Fig. 3. The sensitivity of the solution Vdiv
0 on the number of terms n0 in the Galerkin approximation. Physical parameters are the same

as in Table 1, and v1 ¼ 0. Note the logarithmic vertical axis in the second plot.
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The numerical solution approximates the solution of the continuous problem (represented by Eq. (24)) rather

accurately. As an example, Fig. 3 shows the sensitivity of the solution Vdiv
0 on the number of terms n0 in the Galerkin

approximation when v1 ¼ 0 and physical parameters are as in Table 1.

Beginning with the last known solution of the finite-dimensional problem, we obtain an approximation to the

solution of the continuous problem by summing the difference of successive terms based on the curve fits, shown in

Fig. 3, up to a large value of j. The coefficients for the fits are calculated by solving aj þ b¼ f ðvdiff ðjÞÞ from each fit

expression, and performing a linear fit for the function f.

It was observed that the exponential fit converges faster, but fluctuates visibly above and below the data. The rational

fit converges more slowly, but stays closer to the data. For obtaining the limit approximation for each, the upper limit

of summation jmax ¼ 899 was used for the exponential fit, and for the rational fit, jmax ¼ 5999. The limit approximations

from the two fits were found to be very close to each other.

With the physical parameters given above and v1 ¼ 0, we have from both fits the limit approximation

Vdiv
0 mem � 30:6065m=s. We notice that the added terms change the result by less than 0.002%.
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Fig. 4. Effect of fluid velocity on the critical divergence speed, parametrised by values of bending rigidity. The parameter g¼ 15:625.

Fig. 5. Effects of fluid density and fluid velocity on the critical divergence speed of a membrane, D¼ 0. In the blank area, the

eigenvalue problem has no physical solution.
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An important question is how the problem parameters influence the solution. In Figs. 4 and 5, the effect of the

parameters on the critical divergence speed can be seen.

As the fluid velocity is increased, the critical divergence speed also becomes larger, until it suddenly drops to zero.

This is because increasing y shifts the whole spectrum of eigenvalues toward positive infinity. At some critical value of y
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(depending on the other parameters), the maximal negative eigenvalue will cross the origin and become the minimal

positive eigenvalue.

Because statical instability analysis is only concerned with the critical velocity, and not the (complex-valued)

eigenfrequencies, the present analysis cannot tell apart the type of the interval between the origin ðV0 ¼ 0Þ and the

minimal positive eigenvalue, i.e., whether the behaviour in the interval is stable or unstable. Of course, by physical

considerations this interval is known to be stable when the fluid velocity is zero.

Due to this theoretical constraint, we have concentrated only on the lowest region of stability, given by the interval

between the two eigenvalues that, at zero fluid velocity, are the maximal negative and the minimal positive eigenvalues.

Once either end of this region crosses the origin (as y is varied), the results become physically meaningless. The figures

shown have been filtered to show only the physically meaningful data.

With this in mind, Fig. 4 shows the effect of the fluid velocity y (defined by (46)) and the bending parameter b (defined

by (44)) on the critical divergence speed in the lowest region of stability. The density ratio g has been fixed to the value

15.625 corresponding to the physical parameters used in Table 1. As expected, the region of stability expands toward

materials having a larger bending stiffness D, or as the length of the span ‘ becomes shorter.

However, as the tension T is increased, b decreases. This is counterintuitive, as one would expect a stabilising effect

resulting from increased tension. A stabilising effect is indeed present, because increasing the tension also increases the

vacuum divergence velocity (Eq. (36)). This causes y to decrease if the dimensional fluid velocity is kept constant, and at

y¼ 0, l stays constant with increasing T. Thus, one needs to be careful when interpreting the dimensionless results with

respect to tension or paper density.

The critical value of y, where the lowest region of stability ends, can be found for each fixed pair ðb; gÞ numerically,

e.g., with a linear-logarithmic search procedure. That is, start from y¼ 0, increase y in fixed steps until the solution

decreases, then go back one step, halve the step size and repeat the procedure until desired tolerance is achieved. For the

cases illustrated in Fig. 4, the values ycritical are found to be 0.4199 for b¼ 0, 0.8287 for b¼ 1, and 1.627 for b¼ 5.

Fig. 5 provides a closer look into the fluid parameters when b¼ 0. The effect of the density ratio is plotted against the

fluid velocity. The shading of each point in the figure represents the ratio of the critical divergence speed to the vacuum

case. Light shades are the closest to the vacuum solution, and dark shades indicate that the critical divergence speed is

much lower than the vacuum solution. The blank area lies outside the lowest stability region. The curve with b¼ 0 in

the previous Fig. 4 shows a slice of this plot at the line g¼ 15:625.
In addition to the critical divergence speed, the corresponding divergence shapes are of interest. All of the shapes at

different parameter values lie between two extremes. These are the vacuum shape, and the critical y limit shape where

the fluid exerts the largest effect. In the vacuum, the value of b has no effect on the shape obtained. On the other hand, if

there is no bending rigidity, any nonzero value of g causes the membrane to take the limit shape.

Fig. 6 shows as an example the divergence shape at b¼ 0:01, g¼ 15:625 and y¼ ycritical � 0:43238. The corresponding
vacuum shape is also shown.

Fig. 7 shows the difference between the vacuum shape and the shape at different y, with fixed g¼ 15:625 and two

different values of b. The critical y for b¼ 0:01 was given in the previous paragraph. For b¼ 0:1, we have

ycritical � 0:49161.
The vertical scaling of Fig. 7 corresponds to that in Fig. 6. We observe that the fluid presses the ends of the shape

down when compared to the vacuum case, whereas the centre bulges slightly. The difference changes sign at x �70:35.
We also observe that b needs to be relatively small to obtain a noticeable difference from the vacuum divergence shape.

We can observe that for most pairs of the parameters b and g, the divergence shape is very close to one of its two

extremes. That is, obtaining in-between shapes requires careful choice of the parameters. This behaviour is shown in

Fig. 8.

The first two graphs in Fig. 8 show the distance of the divergence shape from each of the extreme values. The upper

graph represents the distance from the vacuum shape, and the lower graph represents the distance from the critical y
limit shape.

The third graph in Fig. 8 shows the product of the two distances from the first two graphs. At parts of the graph

where this function is large (in the relative sense), we have divergence shapes that are as far as possible from both

extremes.

The sums in Fig. 8 are calculated as follows. The Galerkin series (37) of each divergence shape w is assembled with k

equally spaced points in the range x 2 ½�1; 1�, and normalised by a constant such that the maximum displacement is þ1.

Reference shapes are calculated for a membrane in vacuum (b¼ 0, g¼ 0), and for paper in air near critical y (b¼ 0,

g¼ 15:625, y¼ ycritical � e where e is small) and assembled as wvac and wcrit, respectively. The reference shapes are also

normalised such that the maximum displacement is þ1.

Finally, let us compare our results to known ones. The study by Pramila (1986) is well suited for comparison, because

in it an axially moving web submerged in ideal fluid was considered. In Pramila’s study, we have v1 ¼ 0 for the
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stationary air, D¼ 0 for the threadline model (corresponding to an ideal membrane in the flat panel model), and

rf ¼ 1:2kg=m3.

In his study, Pramila gives the nondimensional first natural frequency as a function of the nondimensional velocity

for some example cases. We are interested in the nondimensional velocity where the natural frequency becomes zero,

denoted l in our eigenvalue problem.
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Fig. 8. Distance of the divergence shape from its extreme values. The parameter k � 201. The axes have a logarithmic scale with

base 10.
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From added mass considerations, Pramila obtains a scaling factor, r. In his model, the first natural frequency and the

critical divergence velocity (computed from the vacuum case) both become scaled with the factor r, when the ideal fluid

is taken into account. In our model, l is the scaling factor for the divergence velocity, and the present analysis makes no

prediction concerning the natural frequency.

For m¼ 35:5 g=m2, Pramila’s Fig. 5 (Pramila, 1986, p. 74) suggests that r is in the range 20–30%, depending on which

added mass expression is used. Similarly, his Figure 6 suggests that for m¼ 54 g=m2, r is in the range 22–35%. For both

these examples, the dimensions of the open draw are 2‘¼ 2:4m and b¼ 0:47m, leading to an aspect ratio of 2‘=b � 5:1,
i.e., a narrow strip. Note that we will not need the width in our model.

In both cases, we have the dimensionless parameters b¼ 0 and y¼ 0. Noting that for stationary fluid the value of T

only affects the absolute value of Vdiv
0 and not l, our model predicts that for the first case ðg¼ 40:5634Þ, r � 25%. For

the second case ðg¼ 26:6667Þ, we have r � 31%. Both cases show good agreement with Pramila’s results.

Let us compare the results using another aspect ratio, too. In Pramila’s numerical example (Pramila, 1986, p. 72), the

geometry is a wide plate with 2‘¼ 0:75m and b¼ 7:5m, giving an aspect ratio of 0.1. The physical parameters are

T ¼ 16N=m and m¼ 50 g=m2. This gives a vacuum divergence velocity of Vdiv
0vac � 18m=s. Pramila predicts that with

these values, depending on the added mass expression used, the critical velocity is found to be between 2.7 and 4:6m=s,
or 15–26% of the vacuum case.

Inserting the numbers to our model, we have b¼ 0, g¼ 9:0, y¼ 0, and solving the eigenvalue problem gives that

Vdiv
0 � 8:7m=s, or 48% of the vacuum case. Here the only agreement is qualitative: according to both models, the

divergence velocity decreases when compared to the vacuum case. The quantitative difference is probably due to the

deformation localisation effect, which renders the cylindrical deformation assumption invalid in the case of an axially

moving wide plate.

As for the stationary plate subjected to axial flow, Paı̈doussis (2004) reports that (p. 1155) in a wide channel, the

dimensionless critical flow velocity for a pinned–pinned plate is Ucd � 3:3. By solving the eigenvalue problem (48), we



ARTICLE IN PRESS
N. Banichuk et al. / Journal of Fluids and Structures 26 (2010) 274–291288
obtain Ucd � 2:8, which is within 20% of the referred value. We observe that the choice of n0 does not matter; the

change in the result between n0 ¼ 1 and 56 is less than 0.5%. The fast convergence agrees with the remark in Guo and

Paı̈doussis (2000).

Paı̈doussis (2004) lists the quantity Ucd
2
=p3 for several different references, where flow on one side only has been

studied. Scaling Ucd by a factor of 2 to account for flow on one side only (Paı̈doussis, 2004, p. 1155), we have for our

result that ð2Ucd Þ
2=p3 � 0:99. Comparing this to the results in the table on p. 1150 in the same reference (for number of

antinodes m¼ 1), we see that our result most closely corresponds to that of Dugundji et al. (1963) (Ucd
2
=p3 ¼ 1:00), as

for the other results listed, the quantity is closer to 1.3.
6. Notes and conclusion

In the previous sections, we considered the static instability problem for travelling membranes and plates submerged

in ideal fluid, when the elastic deformation is small and cylindrical. We discussed the case in which the external

aerodynamic problem is two-dimensional, and the aerodynamic force is found analytically as an integral functional of

the plate displacement function. As a result of analytical transformations, the original aeroelastic problem was reduced

to the solution of an ordinary integro-differential equation for the displacement function. To find the critical divergence

speed, the obtained eigenvalue problem was solved numerically. The computations performed show that the

surrounding fluid has a meaningful effect on the critical parameters of instability.

Furthermore, it was found that when working in a vacuum eigenmode basis, the aerodynamic coefficient matrix

introduced due to the fluid–structure interaction is diagonally dominated, but not diagonal. Thus, when the plate is

submerged in an external medium, even if this medium is ideal fluid, couplings exist between the vacuum eigenmodes

that cannot be reproduced by an added mass approach. This conclusion is important for rigorous estimation.

For most of this study, the velocity of the moving plate was regarded as the unknown critical value characterising the

statical form of instability, i.e., divergence. Other essential values, such as tension, the densities of the fluid and plate,

velocity of the fluid, and the bending rigidity of the plate, were considered as given. However, the problem can be easily

restated to determine the critical values of these other parameters, as was briefly done for the critical velocity of the fluid

in the special case of a stationary plate with no applied tension.

The model developed can, with some limiting assumptions, provide some insight into the divergence of a moving

paper web interacting with air flowing along the axis of movement of the paper web. Taking this into account, we used

for numerical estimations the parameter values corresponding to air and some paper materials.

It should be noted that the cylindrical deformation assumption is an approximation, due to the localisation of

deformation near the free edges that has been observed in axially moving paper webs. Based on our comparison to earlier

results (Pramila, 1986), we conclude that the flat panel model is nevertheless a reasonable approximation for a narrow strip.

A recent study by Frondelius et al. (2006) suggests that due to the boundary layer, the divergence velocities in viscous

fluid may be significantly higher than those predicted by the ideal fluid model. Thus, the present results should be

primarily seen as academic basic research concerning axial flow phenomena and axially moving materials.

Even though the model ignores the deformation localisation effect and fluid viscosity, much work still remains to be

done even in the present simplified case, as the benefit of the approach was not fully realised in the statical analysis. The

dynamical behaviour of the system and dynamical instability analysis (Bolotin, 1963) remain natural directions in which

to extend this research.
Acknowledgement

This research was supported by the MASI Tekes Technology Programme.
Appendix A. Derivation of aerodynamic reaction

The purpose of this section is to present a derivation of the formulas (16)–(18) for the aerodynamic reaction.

To find j¼jðx; zÞ, we consider the following linearised boundary value problem:

Dj¼
@2j
@x2
þ
@2j
@z2
¼ 0; ðA:1Þ
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@j
@z

� �7

¼ gðxÞ; � ‘ � x � ‘; z¼ 0; ðA:2Þ

ðrjÞ1 ¼ 0; ðA:3Þ

where

gðxÞ � ðv1 � V0Þ
dw

dx
: ðA:4Þ

We will solve this problem in the dimensionless notation (3) and (4).

We introduce an auxiliary function W ¼Cþ ij of the complex variable z¼ xþ iz, where i2 ¼ � 1. The Cauchy–

Riemann equations and the boundary conditions (A.2) imply that

@C
@x
¼
@j
@z
¼ gðxÞ ðA:5Þ

and consequently we have

C¼ wðxÞ þ C; ðA:6Þ

wðxÞ ¼
Z x

�1

gðxÞdx; ðA:7Þ

where C is a real constant of integration.

Thus, finding the potential is reduced to the computation of the imaginary part of the analytic function W ¼Cþ ij,
whose real part on ½�1; 1� is ReW ¼C¼ wðxÞ þ C. We use the results given in Sherman (1952) and represent the

solution to this problem as

W ðzÞ ¼
1

2pi
z� 1

zþ 1

� �1=2 Z 1

�1

xþ 1

x� 1

� �1=2 wðxÞ þ C

x� z
dx: ðA:8Þ

The real constant C is determined with the help of the following equation:

1

2pi

Z 1

�1

wðxÞ þ Cffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p dx¼ 0; ðA:9Þ

which represents a regularity condition for the function W at the point z¼ 1. From the condition (A.9) we have

C ¼
1

pi

Z 1

�1

wðxÞdxffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p : ðA:10Þ

Using the expression (A.10) and the formula

1

2pi

Z 1

�1

xþ 1

x� 1

� �1=2
dx

x� z
¼

1

2

zþ 1

z� 1

� �1=2

�
1

2
; ðA:11Þ

we perform substitutions into expression (A.8) and elementary transformations, and obtain

W ¼
1

2pi
z� 1

zþ 1

� �1=2 Z 1

�1

xþ 1

x� 1

� �1=2 wðxÞdx
x� z

þ
C

2
1�

z� 1

zþ 1

� �1=2
" #

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
2pi

Z 1

�1

wðxÞdx

ðx� zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p þ
C

2
: ðA:12Þ

To compute the quantity jþ, we take the limit of (A.12) at z¼ xþ iz-xþ i � 0ðz-0þÞ and separate the imaginary

part

jþ ¼ lim
z-0þ
½ImW ðxþ izÞ� ¼ p:v: �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

2p

Z 1

�1

wðxÞdx

ðx� xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
 !

: ðA:13Þ
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Here we took into account that the constant C on the right-hand side of (A.12) is real, and consequently must be

omitted when the limit of the imaginary part is computed in (A.13). Note also that the integration in (A.13) is

understood in the sense of Cauchy’s principal value (p.v.).

Thus we have

jþ � j� ¼ 2jþ ¼ p:v: �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

p

Z 1

�1

wðxÞdx

ðx� xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
 !

: ðA:14Þ

By definition of the principal value, we will have

2jþ ¼ p:v: �
1

p

Z 1

�1

1� x2

1� x2

� �1=2 wðxÞdx
x� x

 !
¼ lim

e-0
�
1

p

Z x�e

�1

1� x2

1� x2

� �1=2 wðxÞdx
x� x

þ

Z 1

xþe

1� x2

1� x2

� �1=2 wðxÞdx
x� x

" #
:

ðA:15Þ

Integrating by parts and substituting the expression (A.7) for wðxÞ, we have

2jþ ¼ lim
e-0

Nðx� e;xÞ
Z x�e

�1

gðxÞdx�Nðxþ e; xÞ
Z xþe

�1

gðxÞ dx�
Z x�e

�1

Nðx; xÞgðxÞdx�
Z 1

xþe
Nðx; xÞgðxÞ dx

� �
; ðA:16Þ

where we use the notation

Nðx; xÞ �
1

p
ln

1þ L
1� L

����
����; Lðx; xÞ �

ð1� xÞð1þ xÞ
ð1� xÞð1þ xÞ

� �1=2
: ðA:17Þ

We observe that all terms on the right-hand side of (A.16) are finite; therefore, the integration by parts is legitimate.

As e-0, the sum of the first two terms in (A.16) approaches zero, while the last two integrals converge. Therefore, the

required functional dependence is of the form

2jþ ¼ �
Z 1

�1

Nðx; xÞgðxÞdx: ðA:18Þ

With the help of (10), (A.4), (A.17), and (A.18), we derive the expression for the aerodynamic reaction of the fluid:

qf ðxÞ ¼ p�ðxÞ � pþðxÞ ¼ rf v
@j
@x

� �þ
�

@j
@x

� ��� �
¼ rf v

@

@x
½jþ � j�� ¼ rf v

@

@x
½2jþ�

¼ � rf v
@

@x

Z 1

�1

Nðx; xÞgðxÞdx¼ � rf v2
@

@x

Z 1

�1

Nðx; xÞ
dw

dx
ðxÞdx;

where we have abbreviated v � v1 � V0.
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